diff --git a/acl.cool/site/OVERVIEW_GP1.html b/acl.cool/site/OVERVIEW_GP1.html index 5270701..f250ec3 100644 --- a/acl.cool/site/OVERVIEW_GP1.html +++ b/acl.cool/site/OVERVIEW_GP1.html @@ -17,7 +17,7 @@ section.
the character doesn't cause a parsing issue. For example, whitespace tokens are not allowed in variable names.Some examples of assigning variables:
-var x: i32; // x is an uninitialized 32-bit signed integer
+var x: i32; // x is an uninitialized 32-bit signed integer
var y <- x; // this won't work, because x has no value
x <- 7;
var y <- x; // this time it works, because x is now 7
@@ -25,12 +25,12 @@ var y <- x; // this time it works, because x is now 7
con a: f64 <- 99.8; // a is immutable
a <- 44.12; // this doesn't work, because con variables cannot be reassigned
The following lines are equivalent,
-con a <- f64(7.2);
+con a <- f64(7.2);
con a: f64 <- 7.2;
con a <- 7.2; // 7.2 is implicitly of type f64
con a <- 7.2D; // With an explicit type suffix
as are these.
-var c: f32 <- 9;
+var c: f32 <- 9;
var c <- f32(9);
var c: f32 <- f32(9);
var c <- 9F;
@@ -68,7 +68,7 @@ Numeric operators are as one expects from C, with the addition of
**
as a power operator.
Numeric literals have an implicit type, or the type can be specified
by a case-insensitive suffix. For example:
-var i1 <- 1234; // implicitly i32
+var i1 <- 1234; // implicitly i32
var f1 <- 1234.5; // implicitly f64
var i3 <- 1234L; // i64
@@ -150,7 +150,7 @@ value can be used as a literal in this fasion.
double-quoted, e.g. "Hello, World."
.
Arrays
GP1 supports typical array operations.
-var tuples : (int, int)[]; // declare array of tuples
+var tuples : (int, int)[]; // declare array of tuples
var strings : string[]; // declare array of strings
var array <- i32[n]; // declare and allocate array of n elements
@@ -161,7 +161,7 @@ con nums <- {1, 2, 3}; // immutable array of i32
Use the length
property to access the number of elements
in an allocated array. Attempting to access length
of an
unallocated array is an exception.
-
+
var colors <- {"Red", "White", "Blue"}; // allocate array
var count <- colors.length; // count is usize(3)
@@ -170,7 +170,7 @@ var count <- colors.length; // count is usize(3)
Negative values wrap from the end (-1 is the last element). An exception
occurs if the value is too big, i.e.no modulo operation is
performed.
-var w <- {1, 2, 3, 4, 5, 6, 7};
+var w <- {1, 2, 3, 4, 5, 6, 7};
w[0] // first element, 1
w[-1] // last element, 7
@@ -191,7 +191,7 @@ i.e.(u128(4), "2").1
would be "2"
.
identical to that of .NET 5 and very similar to that of gawk.
Named Functions
Some examples of defining named functions:
-fn sum(a: f32, b: f32): f32 { a + b } // takes parameters and returns an f32
+fn sum(a: f32, b: f32): f32 { a + b } // takes parameters and returns an f32
fn twice_println(s: string) { // takes parameters and implicitly returns ()
println("${s}\n${s}");
@@ -210,13 +210,13 @@ ordered from left to right in the function definition that is
unassigned. With regard to the join_println
function
defined above, this means that all of the following are valid and behave
identically.
-join_println(a <- "Hello,", b <- "World.");
+join_println(a <- "Hello,", b <- "World.");
join_println(b <- "World.", a <- "Hello,");
join_println(b <- "World.", "Hello,");
join_println("Hello,", "World.");
Function names may be overloaded. For example,
join_println
could be additionally defined as
-fn join_println(a: string, b: string, sep: string) {
+fn join_println(a: string, b: string, sep: string) {
println("${a}${sep}${b}");
}
and then both join_println("Hello,", "World.", " ")
and
@@ -226,7 +226,7 @@ be familar with this pattern from functional languages like F#, wherein
a wrapper function is often used to guard an inner recursive function
(GP1 permits both single and mutual recursion in functions). For
example:
-fn factorial(n: u256): u256 {
+fn factorial(n: u256): u256 {
fn aux(n: u256, accumulator: u256): u256 {
match n > 1 {
true => aux(n - 1, accumulator * n),
@@ -242,7 +242,7 @@ syntax used in this example, refer to Control Flow.
Closures behave as one would expect in GP1, exactly like they do in
most other programming languages that feature them. Closures look like
this:
-var x: u32 <- 8;
+var x: u32 <- 8;
var foo <- { y, z => x * y * z}; // foo is a closure; its type is fn<u32 | u32>
assert(foo(3, 11) == (8 * 3 * 11)); // true
@@ -268,7 +268,7 @@ sign is enclosed by them.
Lambdas are nearly identical to closures, but they don't close over
their environment, and they use the ->
symbol in place
of =>
. A few examples of lambdas:
-con x: u32 <- 4; // this line is totally irrelevant
+con x: u32 <- 4; // this line is totally irrelevant
con square <- { x -> x * x }; // this in not valid, because the type of the function is not known
con square <- { x: u32 -> x * x }; // this if fine, because the type is specified in the lambda
@@ -281,20 +281,20 @@ there is a separate syntax for function types. Given the function
fn sum(a: f64, b: f64): f64 { a + b }
the function type is
expressed fn<f64 f64 | f64>
, meaning a function that
accepts two f64 values and returns an f64. Therefore,
-fn sum(a: f64, b: f64): f64 { a + b }
-con sum: fn<f64 f64 | f64> <- { a, b -> a + b };
-con sum <- { a: f64, b: f64 -> a + b };
+fn sum(a: f64, b: f64): f64 { a + b }
+con sum: fn<f64 f64 | f64> <- { a, b -> a + b };
+con sum <- { a: f64, b: f64 -> a + b };
are all equivalent ways of binding a function of type
fn<f64 f64 | f64>
to the constant sum
.
Here's an example of how to express a function type for a function
argument.
-fn apply_op(a: i32, b: i32, op: fn<i32 i32 | i32>): i32 {
+fn apply_op(a: i32, b: i32, op: fn<i32 i32 | i32>): i32 {
op(a, b)
}
Function Type Inference
The above example provides an explicit type for the argument
op
. You could safely rewrite this as
-fn apply_op(a: i32, b: i32, op: fn): i32 {
+fn apply_op(a: i32, b: i32, op: fn): i32 {
op(a, b)
}
because the compiler can safely infer the function type of
@@ -306,19 +306,19 @@ is not allowed.
syntax used in this section.
Numeric types are automatically coerced into other numeric types as
long as that coercion is not lossy. For example,
-var x: i32 <- 10;
+var x: i32 <- 10;
var y: i64 <- x;
is perfectly legal (the 32-bit value fits nicely in the 64-bit
variable). However, automatic coercion doesn't work if it would be
lossy, so
-var x: i64 <- 10;
+var x: i64 <- 10;
var y: i32 <- x;
doesn't work. This holds for numeric literals as well.
Unsurprisingly, var x: i32 <- 3.14
wouldn't compile. The
floating point value can't be automatically coerced to an integer type.
So what does work? Casting via the target type's pseudo-constructor
works.
-con x: f64 <- 1234.5; // okay because the literal can represent any floating point type
+con x: f64 <- 1234.5; // okay because the literal can represent any floating point type
con y: f64 <- f16(1234.5); // also okay, because any f16 can be losslessly coerced to an f64
con z: i32 <- i32(x); // also okay; uses the i32 pseudo-constructor to 'cast' x to a 32-bit integer
@@ -346,7 +346,7 @@ type of the function is not an integer, GP1 assumes an exit code of
usize(0)
and returns that to the operating system.
The following program prints Hello, World. and exits with an error
code.
-entry main(): usize {
+entry main(): usize {
hello_world();
1
}
@@ -358,9 +358,9 @@ fn hello_world() {
keyword that makes it the entry point. The entry function may also be
implicit. If one is not defined explicitly, the entire file is treated
as being inside an entry function. Therefore,
-println("Hello, World.");
+println("Hello, World.");
is a valid and complete program identical to
-entry main(): usize {
+entry main(): usize {
println("Hello, World.");
}
This behavior can lend GP1 a very flexible feeling akin to many
@@ -368,7 +368,7 @@ scripting languages.
In a program where there is an entry-point specified, only
expressions made within that function will be evaluated. This means that
the following program does NOT print anything to the console.
-entry main(): usize {
+entry main(): usize {
con x: usize <- 7;
}
@@ -383,7 +383,7 @@ structure, in two variants: match
and
*expr*
are expressions and pattern*
are
pattern matching options (refer to Pattern Matching for more
info).
-match expr {
+match expr {
pattern1 => arm_expr1,
pattern2 => arm_expr2,
_ => arm_expr3,
@@ -394,7 +394,7 @@ expression executes all arms that match the pattern. Both flavors return
their last executed expression.
The when
keyword may be used in a given match arm to
further restrict the conditions of execution, e.g.
-con fs <- 43;
+con fs <- 43;
con is_even <- match fs {
n when n % 2 == 0 => " is "
@@ -412,10 +412,10 @@ print(fs + is_even + "even.")
along with continue
and break
to help
control program flow. All of these are statements.
-loop { . . . } // an unconditional loop -- runs forever or until broken
-for i in some_iterable { . . . } // loop over anything that is iterable
-while some_bool { . . . } // classic conditional loop that executes until the predicate is false
-do { . . .
+loop { . . . } // an unconditional loop -- runs forever or until broken
+for i in some_iterable { . . . } // loop over anything that is iterable
+while some_bool { . . . } // classic conditional loop that executes until the predicate is false
+do { . . .
} while some_bool // traditional do/while loop that ensures body executes at least once
Pattern Matching
Pattern matching behaves essentially as it does in SML, with support
@@ -423,7 +423,7 @@ for various sorts of destructuring. It works in normal assignment and in
match
arms. It will eventually work in function parameter
assignment, but perhaps not at first.
For now, some examples.
-a <- ("hello", "world"); // a is a tuple of strings
+a <- ("hello", "world"); // a is a tuple of strings
(b, c) <- a;
assert(b == "hello" && c == "world")
@@ -442,24 +442,24 @@ fn u32_list_to_string(l: List<u32>): string { // this is assuming that sq
Enums
Enums are pretty powerful in GP1. They can be the typical enumerated
type you'd expect, like
-enum Coin { penny, nickle, dime, quarter } // 'vanilla' enum
+enum Coin { penny, nickle, dime, quarter } // 'vanilla' enum
var a <- Coin.nickle
assert a == Coin.nickle
Or an enum can have an implicit field named value
-enum Coin: u16 { penny(1), nickle(5), dime(10), quarter(25) }
+enum Coin: u16 { penny(1), nickle(5), dime(10), quarter(25) }
var a <- Coin.nickle;
assert(a == Coin.nickle);
assert(a.value == 5);
Or an enum can be complex with a user-defined set of fields, like
-enum CarModel(make: string, mass: f32, wheelbase: f32) { // enum with multiple fields
+enum CarModel(make: string, mass: f32, wheelbase: f32) { // enum with multiple fields
gt ( "ford", 1581, 2.71018 ),
c8_corvette ( "chevy", 1527, 2.72288 )
}
A field can also have a function type. For example
-enum CarModel(make: string, mass: f32, wheelbase: f32, gasUsage: fn<f32 | f32>) {
+enum CarModel(make: string, mass: f32, wheelbase: f32, gasUsage: fn<f32 | f32>) {
gt ( "ford", 1581, 2.71018, { miles_traveled -> miles_traveled / 14 } ),
c8_corvette ( "chevy", 1527, 2.72288, { miles_traveled -> miles_traveled / 19 } )
}
@@ -467,7 +467,7 @@ assert(a.value == 5);
var my_car <- CarModel.c8_corvette;
var gas_used <- my_car.gasUsage(200); // estimate how much gas I'd use on a 200 mile trip
Equivalence of enums is not influenced by case values, e.g.
-enum OneOrAnother: u16 { one(0), another(0) }
+enum OneOrAnother: u16 { one(0), another(0) }
con a <- OneOrAnother.one;
con b <- OneOrAnother.another;
@@ -482,7 +482,7 @@ only value types are allowed for enum fields.
keyword. Fields are defined in the record
block and
behavior is defined in the optional impl
block.
For example,
-record Something {
+record Something {
label: i32 // field label followed by some type
} impl { . . . } // associated functions. This is different than having functions in the fields section because impl functions are not assignable.
If the record implements some interface, SomeInterface
,
@@ -492,7 +492,7 @@ the impl
would be replaced with
functions of the Something
record.
Unions
Unions are the classic discriminated sum type.
-union BinaryTree {
+union BinaryTree {
Empty,
Leaf: i32,
Node: (BinaryTree BinaryTree),
@@ -502,7 +502,7 @@ functions of the Something
record.
section.
Type aliasing is provided with the type
keyword,
e.g.
-type TokenStream Sequence<Token>
+type TokenStream Sequence<Token>
type Ast Tree<AbstractNode>
fn parse(ts: TokenStream): Ast { . . . }
@@ -518,7 +518,7 @@ Types
#
, &
, and @
. These are
immutable reference, mutable reference, and dereference, respectively.
Some examples of referencing/dereferencing values:
-var a <- "core dumped";
+var a <- "core dumped";
var b <- &a; // b is a mutable reference to a
assert(a == @b);
@@ -539,7 +539,7 @@ assert(@@c == a);
references.
The reference operators may be prepended to any type, T, to describe
the type of a reference to a value of type T, e.g.
-fn set_through(ref: &string) { // this function takes a mutable reference to a string and returns `()`
+fn set_through(ref: &string) { // this function takes a mutable reference to a string and returns `()`
@ref <- "goodbye";
}
diff --git a/acl.cool/syntax_wrapper.sh b/acl.cool/syntax_wrapper.sh
new file mode 120000
index 0000000..2af984f
--- /dev/null
+++ b/acl.cool/syntax_wrapper.sh
@@ -0,0 +1 @@
+../syntax_wrapper.sh
\ No newline at end of file
diff --git a/build.sh b/build.sh
index 6f54f9c..1f6e04b 100755
--- a/build.sh
+++ b/build.sh
@@ -21,23 +21,8 @@ source ./pgvv/bin/activate
find acl.cool/site/ ytheleus.org/site/ -type f \( -name '*.dj' -o -name '*.html' \) -exec cat {} + >all_chars.txt
cat common_chars.txt >>all_chars.txt
-for font in fonts/LiterataTT/LiterataTT-Subhead{Regular,Italic,Bold,BoldItalic}.woff2; do
- woff2_decompress "$font"
- ttf_font="${font%.woff2}.ttf"
-
- subset_ttf="${ttf_font%.ttf}-Subset.ttf"
- hb-subset "$ttf_font" \
- --output-file="$subset_ttf" \
- --text-file=all_chars.txt \
- --layout-features='*' \
- --passthrough-tables
-
- woff2_compress "$subset_ttf"
-
- rm "$subset_ttf" "$ttf_font"
-done
-
-for font in fonts/JuliaMono/*{-Light,-Regular,-SemiBold}{,Italic}.woff2; do
+for font in fonts/LiterataTT/LiterataTT-Subhead{Regular,Italic,Bold,BoldItalic}.woff2 \
+ fonts/JuliaMono/*{-Light,-Regular,-SemiBold}{,Italic}.woff2; do
woff2_decompress "$font"
ttf_font="${font%.woff2}.ttf"
diff --git a/soupault.toml b/soupault.toml
index 3f9537d..e3097be 100644
--- a/soupault.toml
+++ b/soupault.toml
@@ -139,4 +139,4 @@ delete_all = true
[widgets.syntax]
widget = "preprocess_element"
selector = 'pre code'
-command = "pygmentize -l ${ATTR_CLASS##*-} -f html | head -c -13 | awk -F '' '{print $NF}'"
+command = "./syntax_wrapper.sh ${ATTR_CLASS##*-}"
diff --git a/syntax_wrapper.sh b/syntax_wrapper.sh
new file mode 100755
index 0000000..3f1c4f7
--- /dev/null
+++ b/syntax_wrapper.sh
@@ -0,0 +1,9 @@
+#! /usr/bin/env bash
+
+if [[ $# -lt 1 ]] || ! { pygmentize -L lexers | grep -qw "$1"; }; then
+ printf ""
+ cat
+ printf "
"
+else
+ pygmentize -l $1 -f html | head -c -13 | awk -F '' '{print $NF}'
+fi
\ No newline at end of file
diff --git a/ytheleus.org/syntax_wrapper.sh b/ytheleus.org/syntax_wrapper.sh
new file mode 120000
index 0000000..2af984f
--- /dev/null
+++ b/ytheleus.org/syntax_wrapper.sh
@@ -0,0 +1 @@
+../syntax_wrapper.sh
\ No newline at end of file